Search results

1 – 9 of 9
Article
Publication date: 17 June 2015

N. Torić, A. Harapin and I. Boko

The paper presents an application of a newly developed implicit procedure for including steel creep strain into structural fire analysis through modelling a series of stationary…

Abstract

The paper presents an application of a newly developed implicit procedure for including steel creep strain into structural fire analysis through modelling a series of stationary fire tests. An implicit modelling procedure is incorporated into customized structural fire analysis software. Four stationary fire tests on simply supported, steel members were modelled using strain modified stress-strain curves. Strain modified curve was obtained by adding the creep strain directly into the steel stationary stress-strain material curve. The proposed implicit procedure in this manner attempts to create an equivalent transient stress-strain curve from the provided stationary stress-strain curve. The proposed implicit procedure was able to provide satisfactory prediction of member deflections in the temperature region of 400-700°C.

Details

Journal of Structural Fire Engineering, vol. 6 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 December 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the…

Abstract

Purpose

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams.

Design/methodology/approach

Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated.

Findings

The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative.

Originality/value

The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 September 2016

Neno Toric, Rui Rui Sun and Ian W. Burgess

This paper aims to propose a methodology to remove inherent implicit creep from the Eurocode 3 material model for steel and to present a creep-free analysis on simply supported…

Abstract

Purpose

This paper aims to propose a methodology to remove inherent implicit creep from the Eurocode 3 material model for steel and to present a creep-free analysis on simply supported steel members.

Design/methodology/approach

Most of the available material models of steel are based on transient coupon tests, which inherently include creep strain associated with particular heating rates and load ratios.

Findings

The creep-free analysis aims to reveal the influence of implicit creep by investigating the behaviour of simply supported steel beams and columns exposed to various heating regimes. The paper further evaluates the implicit consideration of creep in the Eurocode 3 steel material model.

Originality/value

A modified Eurocode 3 carbon steel material model for creep-free analysis is proposed for general structural fire engineering analysis.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 December 2011

D. Matešan, J. Radnić, N. Grgić and V. Čamber

The paper first presents the results of experimental tests of limit strength capacity of a continuous reinforced concrete slab with two spans. The slab was loaded with point load…

Abstract

The paper first presents the results of experimental tests of limit strength capacity of a continuous reinforced concrete slab with two spans. The slab was loaded with point load in the middle of each span. The effect of the tensile rebars length above the inner support on the limit strength capacity of the slab was analyzed. Already developed numerical model by the authors for the analysis of reinforced and prestressed concrete slabs and shells, was additionally tested on the obtained experimental test results. The limit strength capacity of a one-way continuous reinforced concrete slab with two spans and different tensile reinforcement arrangements above the middle support, loaded by a uniformly distributed load, were analyzed by the model. The length of tensile reinforcement above the inner supports of one-way continuous slabs affects the limit strength capacity and deflection of slabs.

Details

World Journal of Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 July 2020

Hadi O. Al Haddad and Elie G. Hantouche

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into…

Abstract

Purpose

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into account the thermal creep effect.

Design/methodology/approach

An analytical model is developed and validated against finite element (FE) models previously validated against experimental tests in the literature. Major material and geometrical parameters are incorporated in the analysis to investigate their influence on the overall response of the shear endplate assembly in fire events.

Findings

The analytical model can predict the induced axial forces and deflections of the assembly. The results show that when creep effect is considered explicitly in the analysis, the beam undergoes excessive deformation. This deformation needs to be taken into account in the design. The results show the significance of thermal creep effect on the behavior of the shear endplate assembly as exposed to various fire scenarios.

Research limitations/implications

However, the user-defined constants of the creep equations cannot be applied to other connection types. These constants are limited to shear endplate connections having the material and geometrical parameters specified in this study.

Originality/value

The importance of the analytical model is that it provides a time-effective, simple and comprehensive technique that can be used as an alternative to the experimental tests and numerical methods. Also, it can be used to develop a design procedure that accounts for the transient thermal creep behavior of steel connections in real fire.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2019

Karim Al Khatib, Elie Hantouche and Mohammed Ali Morovat

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key…

Abstract

Purpose

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key parameters are investigated to study their effect on the global response of the steel frames in fire.

Design/methodology/approach

Finite element (FE) models of connection assemblies are first analyzed using Abaqus under transient-state temperature conditions and validated against experimental work available in the literature. Upon acquiring the validated conditions, parametric studies are carried out to study the effect of key geometric and heating parameters on the overall response of the frame assembly to fire temperatures. Thermal creep material is also incorporated in the analyses through a user-defined subroutine, and a comparison between including and excluding creep material is illustrated to show the effect of thermal creep on the structural behavior.

Findings

The results reported herein indicate that having a rigid column increases the thermal-induced axial forces, thus increasing the development of thermal creep strains. Slow heating rates can cause axial stress relaxation in the restrained beam and increase the mid-span deflection and consequently the development of beam catenary action. The results also show that reaching higher initial cooling temperatures and having longer cooling phase durations result in more tensile forces at the end of the cooling phase.

Originality/value

Previous studies were limited to isolated steel connections under steady-state conditions. This study investigates the creep behavior of shear tab connection assemblies under transient-state conditions of fire when creep effects are explicitly considered. This can provide a rational and realistic assessment of the steel behavior in fire events.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 September 2020

Morteza Jamshidi, Heydar Dashti NaserAbadi and Mohammadreza Oliaei

The high heat induced by fire can substantially decrease the load-bearing capacity, which is more critical in unprotected steel structures than concrete reinforced structures. One…

Abstract

Purpose

The high heat induced by fire can substantially decrease the load-bearing capacity, which is more critical in unprotected steel structures than concrete reinforced structures. One of the conventional steel structures is a steel-plate shear wall (SPSW) in which thin infill steel plates are used to resist against the lateral loads. Due to the small thickness of infill plates, high heat seems to dramatically influence the lateral load-bearing capacity of this type of structures. Therefore, this study aims to provide an investigation into the performance of SPSW with reduced beam section at high temperature.

Design/methodology/approach

In the present paper, to examine the seismic performance of SPSW at high temperature, 48 single-span single-story steel frames equipped with steel plates with the thicknesses of 2.64 mm, 5 mm and 7 mm and yield stresses of 85 MPa, 165 MPa, 256 MPa and 300 MPa were numerically modeled. Furthermore, their behavioral indices, namely, strength, stiffness, ductility and hysteresis behavior, were studied at the temperatures of 20, 458, 642 and 917? The simulated models in the present paper are based on the experimental specimen presented by Vian and Bruneau (2004).

Findings

The obtained results revealed that the high heat harshly diminishes the seismic performance of SPSW so that the lateral strength is reduced even by 95% at substantially high temperatures. Therefore, SPSW starts losing its strength and stiffness at high temperature such that it completely loses its capacity of strength, stiffness and energy dissipation at the temperature of 917? Moreover, it was proved that by separating the percentage of their participations variations of the infill plate in SPSW, their behavior and the bare frame can be examined even at high temperatures.

Originality/value

To the best of the authors’ knowledge, the seismic performance of SPSW at different temperatures has not been evaluated and compared yet.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 January 2020

Ante Džolan, Mladen Kožul, Alen Harapin and Dragan Ćubela

This paper aims to present an approach for the numerical simulation of concrete shrinkage. First, some physical mechanisms of shrinkage are described and then the developed…

Abstract

Purpose

This paper aims to present an approach for the numerical simulation of concrete shrinkage. First, some physical mechanisms of shrinkage are described and then the developed numerical model for the analysis of shrinkage of spatial three-dimensional structures using thermal analogy is presented. Results of the real behavior of structures because of concrete shrinkage using the developed numerical model are compared with the experimental and it is clearly shown that the developed numerical model is an efficient tool in predicting the time-dependent behavior of all concrete structures.

Design/methodology/approach

In this paper, Fib Model Code 2010 to predict shrinkage deformation of concrete is used, and it was incorporated in the three-dimensional numerical model using the thermal analogy. Mentioned three-dimensional numerical model uses the modified Rankine material law to describe concrete behavior in tension and modified Mohr-Coulomb material law to describe concrete behavior in compression. The developed three-dimensional numerical model successfully analyzes the behavior of reinforced and/or prestressed concrete structures including time-dependent deformations of concrete as well.

Findings

Results are shown in this paper clearly demonstrate the reliability of the developed numerical model in predicting the shrinkage strain, as well as its impact on concrete and reinforced concrete structures. The results obtained using the developed numerical model are in better agreement with the experimental results, than the results obtained using the numerical models from literature that also use the Fib Model Code 2010 to predict the shrinkage strain. So, it can be concluded that for a real simulation of concrete structures, alongside the model for predicting the shrinkage strain, the models for concrete behavior in tension and compression have a very important role.

Originality/value

Results of the developed three-dimensional numerical model were compared with experimental results from literature and with theoretical foundations, and it can be talked that this numerical model presents a good tool for analysis of reinforced and prestressed concrete structures including shrinkage deformation of concrete. Results obtained using the developed three-dimensional numerical model are better agreed with experimental than results of other numerical model from literature.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 February 2014

Jure Radnic, Radoslav Markic, Alen Harapin, Domagoj Matesan and Goran Baloevic

The results of experimental testing of stirrup effects on compressive strength and ductility of axially loaded confined reinforced concrete columns of rectangular cross-section…

Abstract

The results of experimental testing of stirrup effects on compressive strength and ductility of axially loaded confined reinforced concrete columns of rectangular cross-section are presented. Effects of different concrete strengths, different stirrup bar diameters and different stirrup spacing on column's bearing capacity and ductility have been researched.

Details

World Journal of Engineering, vol. 10 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 9 of 9